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Self-replication and splitting of domain patterns in reaction-diffusion systems
with the fast inhibitor
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Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 16 April 1996

An asymptotic equation of motion for the pattern interface in the domain-forming reaction-diffusion systems
is derived. The free boundary problem is reduced to the universal equation of nonlocal contour dynamics in
two dimensions in the parameter region where a pattern is not far from the points of the transverse instabilities
of its walls. The contour dynamics is studied numerically for the reaction-diffusion system of the FitzHugh-
Nagumo type. It is shown that in the asymptotic limit the transverse instability of the localized domains leads
to their splitting and formation of the multidomain pattern rather than fingering and formation of the labyrin-
thine pattern[S1063-651X96)01310-4

PACS numbsgs): 05.70.Ln, 47.54+t, 82.20.Mj, 83.70.Hq

I. INTRODUCTION Muratov and Osipov developed a general asymptotic theory
of such instabilities in an arbitrarl system described by
Pattern formation is a remarkable phenomenon typical foEgs. (1) and (2) [9]. They have shown that the instabilities
many physical, chemical, and biological systems inside andre determined by the motion of the pattern walls. Goldstein,
outside of thermal equilibriuni1—8]. As a rule, these are Muraki, and Petrich derived an equation of motion for a
extremely complicated phenomena. However, in many casesmple reaction-diffusion system of the FitzHugh-Nagumo
pattern formation may be explained on the basis of systemiype in the limit of the fast inhibitor and small activator-
of reaction-diffusion equations of the activator-inhibitor inhibitor coupling and drew similar conclusions about the
type. Systems of this kind include electron-hole and gagransverse instabilities of the domain pattefh4]. The nu-
plasma, semiconductor and superconductor structures, sysyerical simulations of concrete reaction-diffusion systems in
tems with uniformly generated combustion material, chemithe limit of fast inhibitor (> €) showed that the instabilities
cal reactions with autocatalysis and cross catalysis, modetgpically lead to the formation of labyrinthine patterns. Spot
of morphogenesis and population dynamis®ge, for ex- replication was observed only in the case of slow inhibitor
ample[2-7], and references therginThe simplest example (a=<e¢) [13,15.

of such a system is a pair of reaction-diffusion equations Numerical solution of Egs(1) and (2) for a concrete
model shows that for the same values of the parameters there
; 8_9:|2A0_q(0 A 0 exist qualitatively dl_fferer_n types of stable stath sollutlons.
o gt VAT These are the solutions in the form of the labyrinthine pat-

terns[Fig. 2@] and the multidomain pattern$ig. 2(b)].
an The labyrinthine pattern forms as a result of the instability of
TWEZLZA n—Q(6,7.A), (20 asingle domain which is taken as an initial condition in Fig.
2(a). In the simulation of Fig. @) the initial condition was

where 6 is the activator,y is the inhibitor,| andL are the
characteristic length scales, angland ,, are the character- : 0=0 T - '
istic time scales of the activator and the inhibitor, respec- o4l \J N g=0
tively, g andQ are certain nonlinear functions, aidis the o
bifurcation parameter. n,
Kerner and Osipov showed that the properties of patterns o2 7
and pattern formation scenarios in the systems described by
Egs. (1) and (2) are chiefly determined by the parameters < 8
e=Il/L and a=7,/7, and the shape of the nulicline of the 9, 0,
equation for the activatdi3—5]. In many cases this nulicline
is N shaped(Fig. 1). In suchN systems static domain pat-
terns may form where<1 [3-5,9. These patterns are es-
sentially the domains of high and low values of the activator
separated by the narrow walls whose width is of orber 0.4 uh 8
Recent experiments and numerical simulations have revealed . . . .
a lot of new pattern formation scenarios in these systems - 05 0 05 1
such as growth of fingers, tip splitting, spot replication, and 0
formation of labyrinthine patternd0—-15. These effects are
associated with the fact that at certain parameters the patterns FIG. 1. Nullclines of Egs(1) and (2) with q=6°— 6— 5 and
become unstable with respect to the transverse perturbationd= 6+ n—A.
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FIG. 2. Two types of extended domain patterns: labyrinthine pat@rand multidomain patter(b). Results of the numerical simula-
tions of Egs.(1) and (2) with q=6°— 60— » and Q=6+ »—A. The parameters used are=0.05a4=0.2A=—0.4. The system size is
20Lx20L. The time of the simulation is 50(). For explanations of the initial conditions see the text.

taken in the form of a random arrangement of domains. As &ace dynamics for Eq$3) and(4) and show that these equa-
result, a metastable multidomain pattern forms in the systemntions are essentially the same in the case of fast and slow
We emphasize that the only difference between the simulanhibitor.
tions of Fig. 2 is the initial conditions, all parameters char- et us introduce the local coordinate system in the vicin-
acterizing the system itself are identical in both cases. ity of the interfaces of the patterfrig. 3). For a pointx let

The aim of this paper is to show that in the asymptotic, pe the distance from the poimtto the interface, and the
limit e—0 the transverse instabilities of the pattern walls(q_ 1)_gimensional coordinaté the projection ofx on the
will always lead to splitting of domains and formation of the submanifold p=const. p is assumed to be positive if the

n;]ultldct)rTam pat;ltlarns dm tht?] limit t‘?fltg?ﬁfaSt tl_n|h|b|tor.t_To point is in the region of high activator values and negative
show this we will reduce the partial difierential équations y, o \yise. The distribution of the activator varies on the

problem in an arbl'graryi-d]m_ez nsionaN system to the free length scale 1 near the interface. Since the characteristic
boundary problem in the limi¢—0 for arbitrarya. We wil length of the variation of the inhibitor is”'>1, » can be
further reduce this problem near the instability points of the g ' 7

domain patterns to the problem of nonlocal contour Olynamponsidered constant in the direction perpendicular to the in-

ics for @> € and obtain a universal equation of motion for terface: = 7;(£). From the general considerations follows

the interface in two dimensions. This equation will be stud-that the curvature of the interfaé&(¢) has to be sma(i3,9.
ied numerically for a concrete model. Therefore, to the first power imandK we may write Eq(3)
as follows:

Il. FREE BOUNDARY PROBLEM

In this section it is convenient to measure the lengths in y X’
units ofl and time in units ofr,, respectively. Then Eq$l) r e
and (2) become A
X p 43
a6
—=A60-0q(6,7,A), ()
ot
9
a lE:E 2An—Q(6,7,A). 4

X

Ohta, Mimura, and Kobayashi developed an approach FIG. 3. The schematics of the system’s geométwo dimen-
which allowed them to reduce equations similar to E@$.  sions. The thick solid line shows the interface, andé, are the
and (4) to the problem of the interface dynamics in the caseocal orthogonal basis of the curvilinear coordinate syste# p
of the slow inhibitor ¢<¢) in the limit e—0 [16]. Here we indicates the distance from a given point to the interface, the dashed
will use their approach to derive the equations of the interdine indicates the surface= const.
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a0 %0 a6 a0
Tt a2 KOG a0 m(©). (5) o= ). (D

The sign ofK is such that it is positive if the interface is So, the relation betweefi and » far from the interfaces is
convex into the low activator region. Notice thatenters local in space. Sincey varies on the length scales of order
only as a parameter in this equation. For tintesl any ¢ ! or K~ and the velocity of the front is of order 1, the
solution of Eg.(5) connecting high and low values of the characteristic time of the variation of the interface velocity is
activator will become close to the solution in the form of aalsoe™*>1 orK ~!>1, which justifies the use of E¢) for
front propagating with the velocity in the direction perpen- finding the distribution of the activator near the interfaces.
dicular to the interface. For any given poiitone can then The characteristic time of variation of the inhibitor field

write caused by the interface motion will also be' or K1 in the
do %o do casea> ¢ (fast inhibitop, or « 1, which is even greater than
_ the previous one in the cases e (slow inhibiton, so the
— —=—+ —— i .
v(¢) dz d7 K(&) dz a(0, (), ©® time derivative in Eq(11) is less or of ordee and, therefore,

can be neglected. Then, the valueséond » far from the

where we introduced the self-similar variabte= —p—vt. interfaces are simply related by the equation of local cou-
The velocity is positive when it points out of the high acti- pling

vator value domain. The boundary conditions for this equa-

tion are q(6,7)=0. (12
O(+2)=0i1(§€), 0(—=)=03(§), (7)  In view of Eq.(12), the inhibitor must satisfy the equation
where 6;, ; are the minimal and the maximal roots of the 0,
equation a “—r-=e "An=Q0(n), ), 13
A(6i146). 7(£)=0 ®  with the following boundary conditions at the interfaces

for any givené. The third solutiond,,(£) of Eq. (8) which (written in terms of the local curvilinear coordinatpsand

lies betweend;; and ;3 may be used to fix the position of ):
the interface relative t@(z) by requiring thatd= 6,,(£) on — _
the interface. Thus (&) represents the normal velocity of the 7(+0.8)=n(=06)=m(&). (14)

pattern interface at a poirt , , The dependencé( ) in Eq. (13) is the solution of Eq(12).

The velocityv can be found by solving Ed6) with the 1 gependence is multivalued, so for the regions of high
above-mentioned boundary conditions. The consistency conyng jow activator values one should take the branches con-
dition which is obtained from Eq(6) by multiplying it by  nected withg,, and 6,4, respectively. Thus we recovered the
dé/dz and integrating ovez gives the following expression (aquit obtained by Ohta, Mimura, and Kobayashi in Re6]

for the velocity in terms 0#(2): in the case of the fast inhibitor as well. The term in the
o left-hand side of Eq(13) is of ordere/a which can be set
I3OI(¢9, 7;)dé equal to zero in the case of the fast inhibitor.
bi1 Equation(13) is essentially nonlinear since it involves the
VTR T T Tde\ 2 © inverse function of essentially nonlinear functiarg6, ),
f_w E) dz even if Eq.(4) were linear. Moreover, the right-hand side of

Eqg. (13) becomes singular at the poirig and ¢, (see Fig. 1

From this equation follows that the front velocity is of ~ Wheredg(6o,70) =0 andag(6g ., 70) =0, respectively, since

order 1. Notice that Eq(6) is essentially an equation of the function(6) becomes singular at these points. When
motion of a particle in the potential the distribution ofy at a pointx, reaches the values af, or

79, a sudden down jump or up jumflocal breakdowp
occurs at that point, respectivdl$—5,9,19. In terms of the
Up= _f q(8,7:)d, (10 free boundary problem this corresponds to the instantaneous

creation of a new interface at poirg, which will start to
with the friction proportional t + K with time z [3-5]. In  evolve according to the equation of the interface motion.
N systemdJ, is a double hump potentifior those values of  This is an important ingredient of the free boundary problem
n; for which it has only a single hump E¢6) has no solu- describing the dynamics of the pattern interface that should
tions], so Eq.(6) has a unique solution which satisfies the not be left out in solving this problem. Notice that local
boundary conditions in Ed7) for the given values of; and  breakdown is responsible for the domain splitting in the one-
K, which corresponds to the trajectory going from the top ofdimensionalN systemq3-5].
one hump to the top of the other. Thus the velocity of the Equations(6)—(8) together with Eqs(12)—(14) and the
interface is a single-valued function of the curvature and theule for dealing with the singularities of E(L3) discussed in
value of » at the interface. Far from the interfaces the acti-the preceding paragraph are the closed set of equations
vator varies on the characteristic length’, so the Laplac- which defines completely the dynamics of any domain pat-
ian in Eq.(3) in that region can be dropped and E8).reads tern in the system described by E@3) and (4) in the limit
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e—0 both in the case of slow and fast inhibitors. Thesecase since one has to linearize Etp) inside and outside of
equations were obtained with accuracyed€l andK<1. the domain separately. However, this is justified when the
Note that the presence of the curvature term in the equatiodomain size is much smaller than the characteristic length of
of motion for the interface suggests only that the interfacehe inhibitor variation since the potential then is only a per-
has to be sufficiently smooth, more exactly, it has to beturbation and can be neglected in the zeroth order.

smooth on the length scales of order 1. This, of course, does Since the velocity of the front is small, it can also be
not mean that the interfaces are not allowed to intersect, fuséinearized in 7. This, however, extremely simplifies the
or loose their connectivity in the course of their evolution. problem since one no longer has to solve the nonlinear ei-
Self-replicating domains, which will be studied in the subse-genvalue problem in Eq6). Indeed, in the linear approxi-
guent sections, are a good example of the latter. Also, aation in% we can replace#(z) in the denominator of Eq.

domain may disappear if it shrinks too much. (9) by the solution in the form of the static one-dimensional
front and expand the numerator #, so we immediately
I1l. NONLOCAL CONTOUR DYNAMICS obtain for the velocity at a poirg on the interface

As was shown in Refl9], whena> € static domain pat- _ Os3
terns may be stable only when their characteristic size is v(§)=—K(§)—ﬂi(§)Z_lf a,(6,79)d6, (21
much smaller than the characteristic length of the inhibitor bs1
variation because of the stabilizing action of the interactionan d
between the walls of the pattern. Typically, a pattern desta-
bilizes when the characteristic distance between its wails Oy
the units of Sec. )ibecomes of ordee™?* [9]. In this situ- Z:f V2[U o 0s1,m5) — U 4( 8, 15)1d 6, (22)
ation the velocity of the non-stationary pattern interface must Os1
be much smaller than one. Also, the value of the inhibitor ] ] ]
must be close to the value of, at which the velocity of the WhereU, is defined in Eq(10).

pattern wall is equal to zero in one dimension. According to  The distribution of7(x) at each moment in time and,
Eq. (9) with K=0, the value ofy must satisfy therefore, the values 6§ on the interface, which determine

the interface velocity, can be found by solving E&8) by
means of the Green’s function

'953
q(0,7s,A)d6=0, Q(051,3,7]5,A):0, (15

fs1 ~o Q(0s1,75) _

where 65, and 653 are some constants, which generally de- 7= C
pend onA. This situation takes place when the bifurcation
parameterA is close to the values od, or A where the Specifically, in the infinite two-dimensional system
characteristic distance between the walls of the domains with
high or low values of the activator becomes zero in the limit
e—0.

For definiteness let us consider a single domain of high
values of the activator. Then the value of the activator insidevhereK, is the modified Bessel function. Following the idea
the domain will be close t@g;, and tofs, outside. Let us  of Ref.[14], let us transform the integral in E3) in two

af G(x—x")I(x")d%’. (23

2
G(x—x')= 5—K(|x~x|YC), (24

introduce the new variables dimensions into the contour integral along the interface. Us-
- _ ing the defining equation for the Green’s function and the
0=0—06s1, n=n—17s. (16)  Gauss theorem, we find
Equationg12) and(13) can then be linearized. In the case of Q6. 70)
the fast inhibitor we will have TX) = — Sé S
Ap(Os1,75) 0+’ ( 01, 175) 7=0, 17 ae é (e G 1\ rxdf
- +—— er - ,
0=¢ 2A%-C7-al()~Q(b,7), (19 2myc eryC) T
where (29
Qy(bs1,75)d,(0s1,75) wherer is the vector from the point to x’, where the point

C=Q;(0s1,m5)— s . (19 x' lies on the interfacdsee Fig. 3 and the integration is
Ao Os1.7s over the interfaceK; is the modified Bessel function. In
_ _ writing Eq. (25) it was taken into account that the surface

a=Q(bs3. 79~ Q051 75). 20 integr%l (?btained from Eq(24) can be written as well in
and|(x) is the indicator function which is equal to Lifis ~ terms of the vector product involving the tangent vector
inside the domain and 0 outside. The valueQ{fds;,7s) is  dr. The interface has to be oriented counterclockwise in or-
small for A close toA,. Note that in writing Eq.(18) we  der to get the sign right. If there is more than one domain in
neglected the piecewise-constant potential inside the ddhe system, one has to add up the contributions of each do-
mains which is present upon the linearization in the generainain given by the integral in Ed25).
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For a single domain of the size of order?® one can IV. SELF-REPLICATING DOMAINS
expand the Bessel function in E5), so we obtain the IN A CONCRETE REACTION-DIFFUSION SYSTEM

followi i i [ : . : . .
ollowing equation of motion for the interface In this section we will apply the results obtained above

and show that the proposed mechanism of the instability de-
(€)= —K(&)— BQ(6s1,75) velopment indeed takes place in a concrete reaction-diffusion
aCZz system. To do this we will use the system which is described

by Egs.(3) and (4) with

2
4 f% ff [IN(0.54¢/C) + Inr[F xdr,  (26)

q=6°-6-17, (29
where Q=6+7n—A. (30)
The nuliclines of this system fok= — 0.6 are shown in Fig.

_ bs ) 1.
B=~1Q0s.79) = Q65175 le a,(0:75)d0. This system is particularly convenient because the depen-
(270 dences of its characteristic parameters/frare especially
simple. Also, the nonlinear eigenvalue problem in Ej.in
and the poinix is now on the interface. If we introduce the this system admits exact solution. Simple calculation shows
renormalized coordinates, and time and introduce the newhat

control parameteA
P 7e=0, O6g=—1, 6Oa=1, (31)

_ = _ B 0 , 6*2/3 .. . .

Foxe?® Toted Ae Q( s;cnzs) 28 and the coefficients involved in E¢R6) are
2\2
-

. L . a=2, B=4, C=§, Z=
we will eliminate thee dependence in Eq26) (except for 2
the weak logarithmic dependenc@hus we obtained the as- .
ymptotic equation of motion for a localized domain with the The value of Q(fs;,7s) becomes zero at=A, with
characteristic size much smaller than the characteristic siZ8o=—1. Also, the homogeneous state of the system
of the inhibitor variation. This equation was derived with the #h= ~ |AIYS, pp=—]AI"(1-|A]?®) is  stable for
accuracy toe?3. Note that at this point all information about A<Ac=—1/33.
the specific nonlinearities of the system is contained only in The solution of Eq.(6) can be sought in the form
a few numerical constant®, C, andZ. These constants are #(z)=atantbz+c, wherea, b, andc are constants. As a
all positive for the reaction-diffusion systems of the result, the dependence of the front velocity en (with
activator-inhibitor typg[9]. Furthermore, they can be incor- K=0) is implicitly given by the following equation:
porated into the rescaléé=eZC*%B, provided that time

(32

and coordinate are also suitably rescaled. So, the dynamics 2, 3

of the localized domains in any two-dimensiorélsystem E NN (33
not far from A, depends only oA and’e, the last depen-

dence being logarithmically weak. The velocityv satisfiedv|< 312, the maximum value being

Equation(26) is also good for the description of several achieved aty= 7,, wherez,=2/3\/3. Thus for all values of
interacting domains if the distance between them is not much for which Eq.(13) is not singular the dependengéy,) is
greater thane 22, In order to study the interaction of do- single-valued.
mains separated by the distances of order one has to use Another special feature of this system is the fact that in it
Egs.(21) and(25). the piecewise-constant potential mentioned in Sec. lll is

Equation(26) contains a large logarithm which multiplies identically zero, so Eqg21) and(25) also describe the dy-
namics of any complex pattern with the characteristic do-
main size much smaller thasn * for any values ofA. These
the domain. This means that with the logarithmic accuracynclude the complex patterns forming in the late stages of the
the area of the evolving domain has to be conserved. Alsgjevelopment of the transverse instabiliisly]. In fact, the
the nonlocal term in Eq(26) is an increasing function af,  analog of Eq(25), nonlocal both in space and time, may be
so the parts of the interface which are close to each othesbtained also in the case of arbitrasy This equation, to-
attract, and the parts which are far from each other repegether with Eq.(21), could be used to study the pulsations
Then the instability which appears for a radially-symmetric(breathing of complex domain patterns in this system.
domain when its radius reaches certain vdRlecannot lead The direct numerical simulations of Eq8) and(4) is a
to the growth of a labyrinthine pattern, but rather will result formidable task. The main difficulty here is the fact that for
in the domain splitting. The domains will then go apart andsmall e there are two very different length scales, so the
the process of splitting will repeat, until the systems becomesimulations require enormous amounts of computational
filled with the multidomain pattern. This mechanism of the power. Recently, it became possible to perform extensive
instability development is qualitatively different from the numerical simulations of the system under consideration us-
one discussed in Ref14]. ing massive parallelization on a supercomp(ii&s. The au-

the integral ﬁxdf which up to a coefficient is the area of
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t=8.0 t=9.0 1=110

FIG. 4. Destabilization of the circular domain. Results of the numerical simulation aBgfor the considered model with=20 and
€=10"%. The box indicates the size of 3B0. The length and time are measured in the rescaled units given H2®q.

thors were able to simulate the system of sufficiently largen Fig. 4. However, the walls in the center come closer to
sizes withe=0.05. The values 0€=0.01 are already very each other than in the previous case, so at some point the
hard to simulate even on a very fast computer. The maimlomain splits into two. The resulting domains continue to
result of these simulations, relevant to the present discussiogrow and split in turn. This process is essentially self-
is that as a result of the development of the transverse instaeplication of the domains, as a result of which the system
bility a localized domain transforms into a labyrinthine pat- will become filled with the multidomain pattern.
tern, which is all connected A is not far fromA,. This We emphasize that unless the system is very close to the
effect takes place at>0.01. For those values @f domain  point A=Ay, the localized domains will always be unstable
splitting and self-replication was observed only whes e and, once excited, will transform into a multidomain pattern
[15]. We performed numerical simulations of this system forvia self-replication even in the case of fast inhibitor gifs
€=<0.01 and saw that a destabilizing localized domain actusmall enough. This is a completely universal result indepen-
ally splits into two. However, the simulation becomes excesdent of any property of the system. In particular, this conclu-
sively long at this point, so it is impossible to see if the sion does not depend on whether the system is monostable or
forming domains will split in turn. bistable. As was noted in the preceding section, the only
Equation(26), from the other hand, allows to study the nontrivial system dependence is contained in the logarithmic
interfacial dynamics for arbitrarily smak. We performed term, and, therefore, this dependence is weak.

numerical simulations of Eq26) for the values of the pa- The results obtained for the system under consideration
rameters when a single localized domain becomes unstabt not change in a wide range ef Whene=0.01, Eq.(26)
with respect to transverse perturbations of its walls. ceases to be a good approximation for E@d) and (25).

Figure 4 shows the evolution of the almost circular do-For extremely smalk (e<10 %) there exist a narrow region
main when its radius is close to the critical radius at whichof the values ofA close to the critical value at which the disk
the domain loses stability with respect to the=2 mode. transforms into a stable domain in the form of a dumbbell.
Initially the domain elongates, but at some point the distancgyhen the value of is increased, the domain self-replication
between the walls becomes so small that the domain splitgill occur even for such small values ef
into three disconnected pieces. The resulting domains con-

tinue to grow until the larger domains split again into seven V. CONCLUSION
(not shown in the figune and the process goes on. Notice '
that in order for this process to take place, the value béas Thus, we have shown that in the case of the fast inhibitor

to be very small. As is seen from the numerical simulationghe transverse instability of the localized domains in the
of Egs.(3) and(4), whene is not very small the domain can reaction-diffusion systems with-shaped nulicline for the
elongate and transform into a stripe without splitting. Thisactivator will always lead to domain splitting and formation
effect also takes place in the reaction-diffusion systems witlof multidomain pattern rather than the formation of labyrin-
the weak activator-inhibitor couplindL4]. thine patterns, ife is sufficiently small.

Figure 5 shows the results of another simulation when the This effect was in fact observed in a quasi-two-
system is further away from the instability point. There thedimensional experiment with the current filaments forming
initial stage of the domain growth is similar to the one shownin n-type GaAs in the process of avalanche breakdpli.
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1=08 t=1.6 t=2.0

O O
g 0
o O

FIG. 5. Self-replication of the domains. Results of the numerical simulation of(F).for the considered model with=30 and
€=10"%. The box indicates the size of 3B0. The length and time are measured in the rescaled units given H2®q.

There the radially symmetric current filaments destabilizedoatterngd10-12,14,1% This does not seem to be the conse-
and split as the current in the sample increased and the radiggience of the finite width of the interface, but rather a pecu-
of a filament grew. At some critical value of current a fila- liarity of the inhibitor dynamics. This effect can actually be
ment split into two and the filaments that formed split in turn controlled by varying the strength of interaction between the
until their radii become sufficiently small. Nonsymmetrically activator and the inhibitdithe constanB in Eq. (26)]. Gold-
distorted or elongated filaments were not observed.  stein, Muraki, and Petrich analyzed the equation similar to
Hagberg and Meron suggested that splitting of domains igys (21) and (25) in the caseB~ ¢ in the limit e—0 and
the consequence of the parity-breaking front transit{o®)- {6, that the transverse instability leads to the formation of

equilibrium Ising-Bloch(NIB) transitiong associated with the connected labvrinthi :
L ) yrinthine pattern. This suggests that by
the variations of the curvature of the domain wdlis3]. changinge or the coupling strengtt® one could control

However, their arguments may apply only to the bistable : . o
reaction-diffusion systems in which the inhibitor is slow. We whether the multidomain pattern or the labyrinthine patter

showed here that the splitting of domains in fact occurs inWIII fc_)rm_ as a result of the domain instability.
It is important to note that the free boundary problem

the systems with théastinhibitor and is determined by the . . g :
nonlocal interaction between different portions of the domair®Pt@ined from Eqgs(1) and (2) in the limit e<1 contains

interface, regardless of whether the system is monostable GPNSiderably less information about the nonlinearities of the
bistable, so, as a rule, the NIB transitions are not responsibfgyStem than the |r_1|t|al partial differential equations problem.
for domain splitting. It is clear that in the systems with the Moreover, according to Eq26), the behavior of any local-
slow inhibitor domain splitting will occur more easily since ized pattern not far from the poings, or A} is universal in
the inhibitor will not be able to react on the motion of the the sense that the dynamics of the interface can be described
walls of the domains locally not only in space, but also inby only a few renormalized parameters. This universality
time. This is also confirmed by the direct numerical simula-was discussed earlier in the context of the instabilities of the
tions of Egs.(1) and(2) [15]. domain patterng9]. This suggests that the free boundary
Notice that the conditior<1 itself is the necessary con- formulation of the pattern dynamics might be a more advan-
dition for the existence of the static domain patterns in thgageous starting point for dealing with the problems of do-
considered system$8-5|, so, in fact, the transition from a main pattern formation rather than the formulation in terms
localized domain to the multidomain pattern consisting ofof reaction-diffusion equations.
disconnected localized domains filling up the space must be The phenomenology of pattern formation similar to the
the major mechanism of the transverse instability developene discussed in the present article is also observed in vari-
ment. Multidomain patterns were indeed observed in theous equilibrium systems with competing interactidisee,
chemical system$10] and in the high-frequency gas dis- for example[8], and references therg@inNotice that the
charge[18]. Nevertheless, numerical simulations and experi+eaction-diffusion system described by E(f9.and(2) in the
mental observations also show that for small but finite limit 7,—0 describes the kinetics of a system with compet-
localized domains may transform into extended labyrinthindng interactions, iig=f(6) — » andQ= »+B#, whereB is a
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constant andf(4) is some cubiclike functio19,20,14.  long-range interactions of Coulombic type and strong sepa-
These equations describe, for example, the kinetics of mitation of length scales.

crophase separation of block copolyméi®,21]. The uni-

versality of the results obtained above suggests that self- ACKNOWLEDGMENTS

replication of domains must be a common feature of the The author is grateful to V. V. Osipov for valuable dis-
systems with competing interactions in the case of repulsiveussions.
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