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An asymptotic equation of motion for the pattern interface in the domain-forming reaction-diffusion systems
is derived. The free boundary problem is reduced to the universal equation of nonlocal contour dynamics in
two dimensions in the parameter region where a pattern is not far from the points of the transverse instabilities
of its walls. The contour dynamics is studied numerically for the reaction-diffusion system of the FitzHugh-
Nagumo type. It is shown that in the asymptotic limit the transverse instability of the localized domains leads
to their splitting and formation of the multidomain pattern rather than fingering and formation of the labyrin-
thine pattern.@S1063-651X~96!01310-4#

PACS number~s!: 05.70.Ln, 47.54.1t, 82.20.Mj, 83.70.Hq

I. INTRODUCTION

Pattern formation is a remarkable phenomenon typical for
many physical, chemical, and biological systems inside and
outside of thermal equilibrium@1–8#. As a rule, these are
extremely complicated phenomena. However, in many cases
pattern formation may be explained on the basis of systems
of reaction-diffusion equations of the activator-inhibitor
type. Systems of this kind include electron-hole and gas
plasma, semiconductor and superconductor structures, sys-
tems with uniformly generated combustion material, chemi-
cal reactions with autocatalysis and cross catalysis, models
of morphogenesis and population dynamics~see, for ex-
ample@2–7#, and references therein!. The simplest example
of such a system is a pair of reaction-diffusion equations

tu

]u

]t
5 l 2Du2q~u,h,A!, ~1!

th

]h

]t
5L2Dh2Q~u,h,A!, ~2!

whereu is the activator,h is the inhibitor,l andL are the
characteristic length scales, andtu andth are the character-
istic time scales of the activator and the inhibitor, respec-
tively, q andQ are certain nonlinear functions, andA is the
bifurcation parameter.

Kerner and Osipov showed that the properties of patterns
and pattern formation scenarios in the systems described by
Eqs. ~1! and ~2! are chiefly determined by the parameters
e[ l /L anda[tu /th and the shape of the nullcline of the
equation for the activator@3–5#. In many cases this nullcline
is N shaped~Fig. 1!. In suchN systems static domain pat-
terns may form whene!1 @3–5,9#. These patterns are es-
sentially the domains of high and low values of the activator
separated by the narrow walls whose width is of orderl .
Recent experiments and numerical simulations have revealed
a lot of new pattern formation scenarios in these systems
such as growth of fingers, tip splitting, spot replication, and
formation of labyrinthine patterns@10–15#. These effects are
associated with the fact that at certain parameters the patterns
become unstable with respect to the transverse perturbations.

Muratov and Osipov developed a general asymptotic theory
of such instabilities in an arbitraryN system described by
Eqs. ~1! and ~2! @9#. They have shown that the instabilities
are determined by the motion of the pattern walls. Goldstein,
Muraki, and Petrich derived an equation of motion for a
simple reaction-diffusion system of the FitzHugh-Nagumo
type in the limit of the fast inhibitor and small activator-
inhibitor coupling and drew similar conclusions about the
transverse instabilities of the domain patterns@14#. The nu-
merical simulations of concrete reaction-diffusion systems in
the limit of fast inhibitor (a@e) showed that the instabilities
typically lead to the formation of labyrinthine patterns. Spot
replication was observed only in the case of slow inhibitor
(a&e) @13,15#.

Numerical solution of Eqs.~1! and ~2! for a concrete
model shows that for the same values of the parameters there
exist qualitatively different types of stable static solutions.
These are the solutions in the form of the labyrinthine pat-
terns @Fig. 2~a!# and the multidomain patterns@Fig. 2~b!#.
The labyrinthine pattern forms as a result of the instability of
a single domain which is taken as an initial condition in Fig.
2~a!. In the simulation of Fig. 2~b! the initial condition was

FIG. 1. Nullclines of Eqs.~1! and ~2! with q5u32u2h and
Q5u1h2A.
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taken in the form of a random arrangement of domains. As a
result, a metastable multidomain pattern forms in the system.
We emphasize that the only difference between the simula-
tions of Fig. 2 is the initial conditions, all parameters char-
acterizing the system itself are identical in both cases.

The aim of this paper is to show that in the asymptotic
limit e→0 the transverse instabilities of the pattern walls
will always lead to splitting of domains and formation of the
multidomain patterns in the limit of the fast inhibitor. To
show this we will reduce the partial differential equations
problem in an arbitraryd-dimensionalN system to the free
boundary problem in the limite→0 for arbitrarya. We will
further reduce this problem near the instability points of the
domain patterns to the problem of nonlocal contour dynam-
ics for a@e and obtain a universal equation of motion for
the interface in two dimensions. This equation will be stud-
ied numerically for a concrete model.

II. FREE BOUNDARY PROBLEM

In this section it is convenient to measure the lengths in
units of l and time in units oftu , respectively. Then Eqs.~1!
and ~2! become

]u

]t
5Du2q~u,h,A!, ~3!

a21
]h

]t
5e22Dh2Q~u,h,A!. ~4!

Ohta, Mimura, and Kobayashi developed an approach
which allowed them to reduce equations similar to Eqs.~3!
and~4! to the problem of the interface dynamics in the case
of the slow inhibitor (a&e) in the limit e→0 @16#. Here we
will use their approach to derive the equations of the inter-

face dynamics for Eqs.~3! and~4! and show that these equa-
tions are essentially the same in the case of fast and slow
inhibitor.

Let us introduce the local coordinate system in the vicin-
ity of the interfaces of the pattern~Fig. 3!. For a pointx let
r be the distance from the pointx to the interface, and the
(d21)-dimensional coordinatej the projection ofx on the
submanifoldr5const. r is assumed to be positive if the
point is in the region of high activator values and negative
otherwise. The distribution of the activator varies on the
length scale 1 near the interface. Since the characteristic
length of the variation of the inhibitor ise21@1, h can be
considered constant in the direction perpendicular to the in-
terface:h5h i(j). From the general considerations follows
that the curvature of the interfaceK(j) has to be small@3,9#.
Therefore, to the first power ine andK we may write Eq.~3!
as follows:

FIG. 2. Two types of extended domain patterns: labyrinthine pattern~a! and multidomain pattern~b!. Results of the numerical simula-
tions of Eqs.~1! and ~2! with q5u32u2h andQ5u1h2A. The parameters used are:e50.05,a50.2,A520.4. The system size is
20L320L. The time of the simulation is 500th . For explanations of the initial conditions see the text.

FIG. 3. The schematics of the system’s geometry~two dimen-

sions!. The thick solid line shows the interface.eW r andeW j are the
local orthogonal basis of the curvilinear coordinate systemr,j; r
indicates the distance from a given point to the interface, the dashed
line indicates the surfacer5const.
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5

]2u

]r2
2K~j!

]u

]r
2q„u,h i~j!…. ~5!

The sign ofK is such that it is positive if the interface is
convex into the low activator region. Notice thatj enters
only as a parameter in this equation. For timest@1 any
solution of Eq.~5! connecting high and low values of the
activator will become close to the solution in the form of a
front propagating with the velocityv in the direction perpen-
dicular to the interface. For any given pointj one can then
write

2v~j!
du

dz
5
d2u

dz2
1K~j!

du

dz
2q„u,h i~j!…, ~6!

where we introduced the self-similar variablez52r2vt.
The velocity is positive when it points out of the high acti-
vator value domain. The boundary conditions for this equa-
tion are

u~1`!5u i1~j!, u~2`!5u i3~j!, ~7!

where u i1,3 are the minimal and the maximal roots of the
equation

q„u i1,3~j!,h i~j!…50 ~8!

for any givenj. The third solutionu i2(j) of Eq. ~8! which
lies betweenu i1 andu i3 may be used to fix the position of
the interface relative tou(z) by requiring thatu5u i2(j) on
the interface. Thusv(j) represents the normal velocity of the
pattern interface at a pointj.

The velocityv can be found by solving Eq.~6! with the
above-mentioned boundary conditions. The consistency con-
dition which is obtained from Eq.~6! by multiplying it by
du/dz and integrating overz gives the following expression
for the velocity in terms ofu(z):

v52K2

E
u i1

u i3
q~u,h i !du

E
2`

1`S du

dzD
2

dz

. ~9!

From this equation follows that the front velocityv is of
order 1. Notice that Eq.~6! is essentially an equation of
motion of a particle in the potential

Uu52E q~u,h i !du, ~10!

with the friction proportional tov1K with time z @3–5#. In
N systemsUu is a double hump potential@for those values of
h i for which it has only a single hump Eq.~6! has no solu-
tions#, so Eq.~6! has a unique solution which satisfies the
boundary conditions in Eq.~7! for the given values ofh i and
K, which corresponds to the trajectory going from the top of
one hump to the top of the other. Thus the velocity of the
interface is a single-valued function of the curvature and the
value ofh at the interface. Far from the interfaces the acti-
vator varies on the characteristic lengthe21, so the Laplac-
ian in Eq.~3! in that region can be dropped and Eq.~3! reads

]u

]t
52q~u,h!. ~11!

So, the relation betweenu andh far from the interfaces is
local in space. Sinceh varies on the length scales of order
e21 or K21 and the velocity of the front is of order 1, the
characteristic time of the variation of the interface velocity is
alsoe21@1 orK21@1, which justifies the use of Eq.~6! for
finding the distribution of the activator near the interfaces.
The characteristic time of variation of the inhibitor field
caused by the interface motion will also bee21 orK21 in the
casea@e ~fast inhibitor!, ora21, which is even greater than
the previous one in the casea&e ~slow inhibitor!, so the
time derivative in Eq.~11! is less or of ordere and, therefore,
can be neglected. Then, the values ofu andh far from the
interfaces are simply related by the equation of local cou-
pling

q~u,h!50. ~12!

In view of Eq. ~12!, the inhibitor must satisfy the equation

a21
]h

]t
5e22Dh2Q„u~h!,h…, ~13!

with the following boundary conditions at the interfaces
~written in terms of the local curvilinear coordinatesr and
j):

h~10,j!5h~20,j!5h i~j!. ~14!

The dependenceu(h) in Eq. ~13! is the solution of Eq.~12!.
This dependence is multivalued, so for the regions of high
and low activator values one should take the branches con-
nected withu i3 andu i1, respectively. Thus we recovered the
result obtained by Ohta, Mimura, and Kobayashi in Ref.@16#
in the case of the fast inhibitor as well. The term in the
left-hand side of Eq.~13! is of ordere/a which can be set
equal to zero in the case of the fast inhibitor.

Equation~13! is essentially nonlinear since it involves the
inverse function of essentially nonlinear functionq(u,h),
even if Eq.~4! were linear. Moreover, the right-hand side of
Eq. ~13! becomes singular at the pointsu0 andu08 ~see Fig. 1!
wherequ8(u0 ,h0)50 andqu8(u08 ,h08)50, respectively, since
the functionh(u) becomes singular at these points. When
the distribution ofh at a pointx0 reaches the values ofh0 or
h08 , a sudden down jump or up jump~local breakdown!,
occurs at that point, respectively@3–5,9,15#. In terms of the
free boundary problem this corresponds to the instantaneous
creation of a new interface at pointx0, which will start to
evolve according to the equation of the interface motion.
This is an important ingredient of the free boundary problem
describing the dynamics of the pattern interface that should
not be left out in solving this problem. Notice that local
breakdown is responsible for the domain splitting in the one-
dimensionalN systems@3–5#.

Equations~6!–~8! together with Eqs.~12!–~14! and the
rule for dealing with the singularities of Eq.~13! discussed in
the preceding paragraph are the closed set of equations
which defines completely the dynamics of any domain pat-
tern in the system described by Eqs.~3! and ~4! in the limit
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e→0 both in the case of slow and fast inhibitors. These
equations were obtained with accuracy toe!1 andK!1.
Note that the presence of the curvature term in the equation
of motion for the interface suggests only that the interface
has to be sufficiently smooth, more exactly, it has to be
smooth on the length scales of order 1. This, of course, does
not mean that the interfaces are not allowed to intersect, fuse,
or loose their connectivity in the course of their evolution.
Self-replicating domains, which will be studied in the subse-
quent sections, are a good example of the latter. Also, a
domain may disappear if it shrinks too much.

III. NONLOCAL CONTOUR DYNAMICS

As was shown in Ref.@9#, whena@e static domain pat-
terns may be stable only when their characteristic size is
much smaller than the characteristic length of the inhibitor
variation because of the stabilizing action of the interaction
between the walls of the pattern. Typically, a pattern desta-
bilizes when the characteristic distance between its walls~in
the units of Sec. II! becomes of ordere22/3 @9#. In this situ-
ation the velocity of the non-stationary pattern interface must
be much smaller than one. Also, the value of the inhibitor
must be close to the value ofhs at which the velocity of the
pattern wall is equal to zero in one dimension. According to
Eq. ~9! with K50, the value ofhs must satisfy

E
us1

us3
q~u,hs ,A!du50, q~us1,3,hs ,A!50, ~15!

whereus1 andus3 are some constants, which generally de-
pend onA. This situation takes place when the bifurcation
parameterA is close to the values ofAb or Ab8 where the
characteristic distance between the walls of the domains with
high or low values of the activator becomes zero in the limit
e→0.

For definiteness let us consider a single domain of high
values of the activator. Then the value of the activator inside
the domain will be close tous3, and tous1 outside. Let us
introduce the new variables

ũ5u2us1 , h̃5h2hs . ~16!

Equations~12! and~13! can then be linearized. In the case of
the fast inhibitor we will have

qu8~us1 ,hs!ũ1qh8 ~us1 ,hs!h̃50, ~17!

05e22Dh̃2Ch̃2aI~x!2Q~us1 ,hs!, ~18!

where

C5Qh8 ~us1 ,hs!2
Qu8~us1 ,hs!qh8 ~us1 ,hs!

qu8~us1 ,hs!
, ~19!

a5Q~us3 ,hs!2Q~us1 ,hs!, ~20!

and I (x) is the indicator function which is equal to 1 ifx is
inside the domain and 0 outside. The value ofQ(us1 ,hs) is
small for A close toAb . Note that in writing Eq.~18! we
neglected the piecewise-constant potential inside the do-
mains which is present upon the linearization in the general

case since one has to linearize Eq.~12! inside and outside of
the domain separately. However, this is justified when the
domain size is much smaller than the characteristic length of
the inhibitor variation since the potential then is only a per-
turbation and can be neglected in the zeroth order.

Since the velocity of the front is small, it can also be
linearized in h̃. This, however, extremely simplifies the
problem since one no longer has to solve the nonlinear ei-
genvalue problem in Eq.~6!. Indeed, in the linear approxi-
mation in h̃ we can replaceu(z) in the denominator of Eq.
~9! by the solution in the form of the static one-dimensional
front and expand the numerator inh̃, so we immediately
obtain for the velocity at a pointj on the interface

v~j!52K~j!2h̃ i~j!Z21E
us1

us3
qh8 ~u,hs!du, ~21!

and

Z5E
us1

us3A2@Uu~us1 ,hs!2Uu~u,hs!#du, ~22!

whereUu is defined in Eq.~10!.
The distribution ofh̃(x) at each moment in time and,

therefore, the values ofh̃ on the interface, which determine
the interface velocity, can be found by solving Eq.~18! by
means of the Green’s function

h̃~x!52
Q~us1 ,hs!

C
2aE G~x2x8!I ~x8!ddx8. ~23!

Specifically, in the infinite two-dimensional system

G~x2x8!5
e2

2p
K0~ ux2x8ueAC!, ~24!

whereK0 is the modified Bessel function. Following the idea
of Ref. @14#, let us transform the integral in Eq.~23! in two
dimensions into the contour integral along the interface. Us-
ing the defining equation for the Green’s function and the
Gauss theorem, we find

h̃~x!52
Q~us1 ,hs!

C

1
ae

2pAC
R S K1~erAC!2

1

erACD rW3drW

r
,

~25!

whererW is the vector from the pointx to x8, where the point
x8 lies on the interface~see Fig. 3!, and the integration is
over the interface,K1 is the modified Bessel function. In
writing Eq. ~25! it was taken into account that the surface
integral obtained from Eq.~24! can be written as well in
terms of the vector product involving the tangent vector
drW. The interface has to be oriented counterclockwise in or-
der to get the sign right. If there is more than one domain in
the system, one has to add up the contributions of each do-
main given by the integral in Eq.~25!.
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For a single domain of the size of ordere22/3 one can
expand the Bessel function in Eq.~25!, so we obtain the
following equation of motion for the interface:

v~j!52K~j!2
BQ~us1 ,hs!

aCZ

1
Be2

4pZ R @ ln~0.54eAC!1 lnr #rW3drW, ~26!

where

B52@Q~us3 ,hs!2Q~us1 ,hs!#E
us1

us3
qh8 ~u,hs!du,

~27!

and the pointx is now on the interface. If we introduce the
renormalized coordinates, and time and introduce the new
control parameterÃ

x̃5xe2/3, t̃5te4/3, Ã52
BQ~us1 ,hs!e

22/3

aCZ
, ~28!

we will eliminate thee dependence in Eq.~26! ~except for
the weak logarithmic dependence!. Thus we obtained the as-
ymptotic equation of motion for a localized domain with the
characteristic size much smaller than the characteristic size
of the inhibitor variation. This equation was derived with the
accuracy toe2/3. Note that at this point all information about
the specific nonlinearities of the system is contained only in
a few numerical constants:B, C, andZ. These constants are
all positive for the reaction-diffusion systems of the
activator-inhibitor type@9#. Furthermore, they can be incor-
porated into the rescaledẽ5eZC3/2/B, provided that time
and coordinate are also suitably rescaled. So, the dynamics
of the localized domains in any two-dimensionalN system
not far fromAb depends only onÃ and ẽ, the last depen-
dence being logarithmically weak.

Equation~26! is also good for the description of several
interacting domains if the distance between them is not much
greater thane22/3. In order to study the interaction of do-
mains separated by the distances of ordere21 one has to use
Eqs.~21! and ~25!.

Equation~26! contains a large logarithm which multiplies

the integral R rW3drW which up to a coefficient is the area of

the domain. This means that with the logarithmic accuracy
the area of the evolving domain has to be conserved. Also,
the nonlocal term in Eq.~26! is an increasing function ofr ,
so the parts of the interface which are close to each other
attract, and the parts which are far from each other repel.
Then the instability which appears for a radially-symmetric
domain when its radius reaches certain value@9# cannot lead
to the growth of a labyrinthine pattern, but rather will result
in the domain splitting. The domains will then go apart and
the process of splitting will repeat, until the systems becomes
filled with the multidomain pattern. This mechanism of the
instability development is qualitatively different from the
one discussed in Ref.@14#.

IV. SELF-REPLICATING DOMAINS
IN A CONCRETE REACTION-DIFFUSION SYSTEM

In this section we will apply the results obtained above
and show that the proposed mechanism of the instability de-
velopment indeed takes place in a concrete reaction-diffusion
system. To do this we will use the system which is described
by Eqs.~3! and ~4! with

q5u32u2h, ~29!

Q5u1h2A. ~30!

The nullclines of this system forA520.6 are shown in Fig.
1.

This system is particularly convenient because the depen-
dences of its characteristic parameters onA are especially
simple. Also, the nonlinear eigenvalue problem in Eq.~6! in
this system admits exact solution. Simple calculation shows
that

hs50, us1521, us351, ~31!

and the coefficients involved in Eq.~26! are

a52, B54, C5
3

2
, Z5

2A2
3

. ~32!

The value of Q(us1 ,hs) becomes zero atA5Ab with
Ab521. Also, the homogeneous state of the system
uh52uAu1/3,hh52uAu1/3(12uAu2/3) is stable for
A,Ac521/3A3.

The solution of Eq.~6! can be sought in the form
u(z)5atanhbz1c, wherea, b, and c are constants. As a
result, the dependence of the front velocity onh i ~with
K50) is implicitly given by the following equation:

v2
2

9
v35

3

A2
h i . ~33!

The velocityv satisfiesuvu,A3/2, the maximum value being
achieved ath5h0, whereh052/3A3. Thus for all values of
h for which Eq.~13! is not singular the dependencev(h i) is
single-valued.

Another special feature of this system is the fact that in it
the piecewise-constant potential mentioned in Sec. III is
identically zero, so Eqs.~21! and ~25! also describe the dy-
namics of any complex pattern with the characteristic do-
main size much smaller thane21 for any values ofA. These
include the complex patterns forming in the late stages of the
development of the transverse instabilities@9,15#. In fact, the
analog of Eq.~25!, nonlocal both in space and time, may be
obtained also in the case of arbitrarya. This equation, to-
gether with Eq.~21!, could be used to study the pulsations
~breathing! of complex domain patterns in this system.

The direct numerical simulations of Eqs.~3! and ~4! is a
formidable task. The main difficulty here is the fact that for
small e there are two very different length scales, so the
simulations require enormous amounts of computational
power. Recently, it became possible to perform extensive
numerical simulations of the system under consideration us-
ing massive parallelization on a supercomputer@15#. The au-
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thors were able to simulate the system of sufficiently large
sizes withe.0.05. The values ofe.0.01 are already very
hard to simulate even on a very fast computer. The main
result of these simulations, relevant to the present discussion,
is that as a result of the development of the transverse insta-
bility a localized domain transforms into a labyrinthine pat-
tern, which is all connected ifA is not far fromAb . This
effect takes place ate.0.01. For those values ofe domain
splitting and self-replication was observed only whena&e
@15#. We performed numerical simulations of this system for
e<0.01 and saw that a destabilizing localized domain actu-
ally splits into two. However, the simulation becomes exces-
sively long at this point, so it is impossible to see if the
forming domains will split in turn.

Equation~26!, from the other hand, allows to study the
interfacial dynamics for arbitrarily smalle. We performed
numerical simulations of Eq.~26! for the values of the pa-
rameters when a single localized domain becomes unstable
with respect to transverse perturbations of its walls.

Figure 4 shows the evolution of the almost circular do-
main when its radius is close to the critical radius at which
the domain loses stability with respect to them52 mode.
Initially the domain elongates, but at some point the distance
between the walls becomes so small that the domain splits
into three disconnected pieces. The resulting domains con-
tinue to grow until the larger domains split again into seven
~not shown in the figure!, and the process goes on. Notice
that in order for this process to take place, the value ofe has
to be very small. As is seen from the numerical simulations
of Eqs.~3! and~4!, whene is not very small the domain can
elongate and transform into a stripe without splitting. This
effect also takes place in the reaction-diffusion systems with
the weak activator-inhibitor coupling@14#.

Figure 5 shows the results of another simulation when the
system is further away from the instability point. There the
initial stage of the domain growth is similar to the one shown

in Fig. 4. However, the walls in the center come closer to
each other than in the previous case, so at some point the
domain splits into two. The resulting domains continue to
grow and split in turn. This process is essentially self-
replication of the domains, as a result of which the system
will become filled with the multidomain pattern.

We emphasize that unless the system is very close to the
point A5Ab , the localized domains will always be unstable
and, once excited, will transform into a multidomain pattern
via self-replication even in the case of fast inhibitor, ife is
small enough. This is a completely universal result indepen-
dent of any property of the system. In particular, this conclu-
sion does not depend on whether the system is monostable or
bistable. As was noted in the preceding section, the only
nontrivial system dependence is contained in the logarithmic
term, and, therefore, this dependence is weak.

The results obtained for the system under consideration
do not change in a wide range ofe. Whene*0.01, Eq.~26!
ceases to be a good approximation for Eqs.~21! and ~25!.
For extremely smalle (e&1029) there exist a narrow region
of the values ofÃ close to the critical value at which the disk
transforms into a stable domain in the form of a dumbbell.
When the value ofÃ is increased, the domain self-replication
will occur even for such small values ofe.

V. CONCLUSION

Thus, we have shown that in the case of the fast inhibitor
the transverse instability of the localized domains in the
reaction-diffusion systems withN-shaped nullcline for the
activator will always lead to domain splitting and formation
of multidomain pattern rather than the formation of labyrin-
thine patterns, ife is sufficiently small.

This effect was in fact observed in a quasi-two-
dimensional experiment with the current filaments forming
in n-type GaAs in the process of avalanche breakdown@17#.

FIG. 4. Destabilization of the circular domain. Results of the numerical simulation of Eq.~26! for the considered model withÃ520 and
e51024. The box indicates the size of 30330. The length and time are measured in the rescaled units given by Eq.~28!.
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There the radially symmetric current filaments destabilized
and split as the current in the sample increased and the radius
of a filament grew. At some critical value of current a fila-
ment split into two and the filaments that formed split in turn
until their radii become sufficiently small. Nonsymmetrically
distorted or elongated filaments were not observed.

Hagberg and Meron suggested that splitting of domains is
the consequence of the parity-breaking front transitions@non-
equilibrium Ising-Bloch~NIB! transitions# associated with
the variations of the curvature of the domain walls@13#.
However, their arguments may apply only to the bistable
reaction-diffusion systems in which the inhibitor is slow. We
showed here that the splitting of domains in fact occurs in
the systems with thefast inhibitor and is determined by the
nonlocal interaction between different portions of the domain
interface, regardless of whether the system is monostable or
bistable, so, as a rule, the NIB transitions are not responsible
for domain splitting. It is clear that in the systems with the
slow inhibitor domain splitting will occur more easily since
the inhibitor will not be able to react on the motion of the
walls of the domains locally not only in space, but also in
time. This is also confirmed by the direct numerical simula-
tions of Eqs.~1! and ~2! @15#.

Notice that the conditione!1 itself is the necessary con-
dition for the existence of the static domain patterns in the
considered systems@3–5#, so, in fact, the transition from a
localized domain to the multidomain pattern consisting of
disconnected localized domains filling up the space must be
the major mechanism of the transverse instability develop-
ment. Multidomain patterns were indeed observed in the
chemical systems@10# and in the high-frequency gas dis-
charge@18#. Nevertheless, numerical simulations and experi-
mental observations also show that for small but finitee
localized domains may transform into extended labyrinthine

patterns@10–12,14,15#. This does not seem to be the conse-
quence of the finite width of the interface, but rather a pecu-
liarity of the inhibitor dynamics. This effect can actually be
controlled by varying the strength of interaction between the
activator and the inhibitor@the constantB in Eq. ~26!#. Gold-
stein, Muraki, and Petrich analyzed the equation similar to
Eqs. ~21! and ~25! in the caseB;e in the limit e→0 and
found that the transverse instability leads to the formation of
the connected labyrinthine pattern. This suggests that by
changinge or the coupling strengthB one could control
whether the multidomain pattern or the labyrinthine pattern
will form as a result of the domain instability.

It is important to note that the free boundary problem
obtained from Eqs.~1! and ~2! in the limit e!1 contains
considerably less information about the nonlinearities of the
system than the initial partial differential equations problem.
Moreover, according to Eq.~26!, the behavior of any local-
ized pattern not far from the pointsAb or Ab8 is universal in
the sense that the dynamics of the interface can be described
by only a few renormalized parameters. This universality
was discussed earlier in the context of the instabilities of the
domain patterns@9#. This suggests that the free boundary
formulation of the pattern dynamics might be a more advan-
tageous starting point for dealing with the problems of do-
main pattern formation rather than the formulation in terms
of reaction-diffusion equations.

The phenomenology of pattern formation similar to the
one discussed in the present article is also observed in vari-
ous equilibrium systems with competing interactions~see,
for example @8#, and references therein!. Notice that the
reaction-diffusion system described by Eqs.~1! and~2! in the
limit th→0 describes the kinetics of a system with compet-
ing interactions, ifq5 f (u)2h andQ5h1Bu, whereB is a

FIG. 5. Self-replication of the domains. Results of the numerical simulation of Eq.~26! for the considered model withÃ530 and
e51024. The box indicates the size of 30330. The length and time are measured in the rescaled units given by Eq.~28!.
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constant andf (u) is some cubiclike function@19,20,14#.
These equations describe, for example, the kinetics of mi-
crophase separation of block copolymers@19,21#. The uni-
versality of the results obtained above suggests that self-
replication of domains must be a common feature of the
systems with competing interactions in the case of repulsive

long-range interactions of Coulombic type and strong sepa-
ration of length scales.
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